Communications

Papers

Sweet chiral porphyrins as singlet oxygen sensitizers for asymmetric Type II photooxygenation, A. G. Griesbeck, M. A. Miranda and J. Uhlig, Photochem. Photobiol. Sci., 2011, 10, 1431

Role of free space and weak interactions on geometric isomerization of stilbenes held in a molecular container, A. Parthasarathy and V. Ramamurthy, Photochem. Photobiol. Sci., 2011, 10, 1455

Chirogenic [3 + 2]-photocycloaddition reactions of 2-substituted naphthoquinones with cyclic alkenes, C. Müller, A. Bauer and T. Bach, Photochem. Photobiol. Sci., 2011, 10, 1463

Hydroxy-group effect on the regioselectivity in a photochemical oxetane formation reaction (the Paterno–Büchi Reaction) of geraniol derivatives, K. Hisamoto, Y. Hiraga and M. Abe, Photochem. Photobiol. Sci., 2011, 10, 1469

The hydrogen-bond-acceptor (HBA) templates 2,3-bis(4-methylenethiopyridyl)naphthalene (2,3-nap) and 1,8-bis(4-pyridyl)naphthalene (1,8-dpn) are used to assemble (E,E)-2,5-dimethylmuconic acid (dmma) in the solid state for an intermolecular [2 + 2] photocycloaddition. Co-crystallisation of 2,3-nap with dmma affords an 1D hydrogen-bonded polymer that is photostable while 1,8-nap affords a 0D hydrogen-bonded assembly that is photoactive. The diene stacks in-phase and reacts to give a syn monocyclobutane in up to 55% yield.

In this manuscript, we describe our initial work to employ hydrogen-bond-acceptor (HBA) templates, in the form of 2,3-bis(4-methylenethiopyridyl)naphthalene (2,3-nap) and 1,8-bis(4-pyridyl)naphthalene (1,8-dpn), to direct the reactivity of a 1,3-diene, in the form of (E,E)-2,5-dimethylmuconic acid (dmma), in the solid state. We have reported that pure dmma undergoes both a dimerisation and trimerisation in the solid state to afford a mixture of products; namely, a monocyclobutane dimer and an unusual bicyclobutyl trimer. The products arise from ‘out-of-phase’ stacking of the diene in the solid (Scheme 1a). 1,3-Dienes such as dmma are familiar reactants in organic solid-state photochemistry, known to undergo cycloaddi-

Small ditopic molecules that act as hydrogen-bond templates have emerged as tools to control intermolecular [2 + 2] photodimerisations of olefins in solids. The templates can serve as molecular equivalents of two hands to assemble and stack alkenes within discrete, or 0D, co-crystalline supramolecular assemblies into the appropriate geometry for photoreaction. To date, hydrogen-bond donor (HBD) templates (e.g. resorcinol) have gained the most attention, providing efficient access to molecules difficult to achieve in solution (e.g. [2.2]paracyclophane, ladderanes).

In this manuscript, we describe our initial work to employ hydrogen-bond-acceptor (HBA) templates, in the form of 2,3-bis(4-methylenethiopyridyl)naphthalene (2,3-nap) and 1,8-bis(4-pyridyl)naphthalene (1,8-dpn), to direct the reactivity of a 1,3-diene, in the form of (E,E)-2,5-dimethylmuconic acid (dmma), in the solid state. We have reported that pure dmma undergoes both a dimerisation and trimerisation in the solid state to afford a mixture of products; namely, a monocyclobutane dimer and an unusual bicyclobutyl trimer. The products arise from ‘out-of-phase’ stacking of the diene in the solid (Scheme 1a). 1,3-Dienes such as dmma are familiar reactants in organic solid-state photochemistry, known to undergo cycloaddi-

© The Royal Society of Chemistry and Owner Societies 2011

This journal is © The Royal Society of Chemistry and Owner Societies 2011

Received 19th February 2011, Accepted 22nd March 2011
DOI: 10.1039/c1pp05077j

Applications of hydrogen-bond-acceptor templates to direct ‘in-phase’ reactivity of a diene diacid in the solid state†‡§

Manza B. J. Atkinson, Anatoliy N. Sokolov, Dejan-Krešimir Bučar, S. V. Santhana Mariappan, Martin T. Mwangi, Michael C. Tiedman and Leonard R. MacGillivray*

Department of Chemistry, University of Iowa, Iowa City, Iowa, USA.

‡ Electronic supplementary information (ESI) available: Details of 1H NMR studies and structure solutions by single-crystal X-ray diffraction. CCDC reference numbers 802315 (2,3-nap), 802316 (1,8-dpn), and 802317 2(1,8-dpn). For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c1pp05077j

§ These authors contributed equally to the manuscript.

COMMUNICATION

Photochemical & Photobiological Sciences

Cite this: Photochem. Photobiol. Sci., 2011, 10, 1384

www.rsc.org/pps

Downloaded by Kenyatta University on 19/04/2013 08:12:39.
Published on 09 April 2011 on http://pubs.rsc.org | doi:10.1039/C1PP05077J

View Article Online

Published on 09 April 2011 on http://pubs.rsc.org | doi:10.1039/C1PP05077J

Department of Chemistry, University of Iowa, Iowa City, Iowa, USA.

E-mail: len-macgillivray@uiowa.edu; Fax: +1 319-335-1270; Tel: +1 319-335-3504

† This article is published as part of a themed issue in honour of Yoshihisa Inoue's research accomplishments on the occasion of his 60th birthday.

‡ This article is published as part of a themed issue in honour of Y oshihisa Inoue's research accomplishments on the occasion of his 60th birthday.

¶ These authors contributed equally to the manuscript.
also emphasize a critical role of template conformation to direct the reactivity of alkenes in solids.14,15

We have recently shown that dmaa self-assembles in the solid state to form 1D hydrogen-bonded polymers sustained by carboxylic acid dimers.7 Neighbouring 1D strands packed such that the nearest-neighbour carbon-carbon double (\(\text{C} \equiv \text{C}\)) bonds assembled parallel and in close proximity. The stacking of the olefins placed the dienes in an out-of-phase geometry that, upon UV-irradiation, afforded both an \(\text{anti}\) monocyclobutane dimer and a bicyclobutyl trimer as products. A total of two HBA templates have been reported to date. More specifically, 2,3-nap and 1,8-dpn have been used to assemble fum face-to-face in 0D assemblies that react to generate chta. The ability of the bipyrindines to enforce face-to-face stacking of fum for a photodimerisation prompted us to determine whether each HBA template could be used to achieve in-phase reactivity of dmaa.

When 2,3-nap was co-crystallised with dmaa (ratio: 1 : 1) from acetonitrile, light-brown needles of (2,3-nap)-(dmaa) formed during a period of 24 h. The composition of (2,3-nap)-(dmaa) was confirmed by \(^1\text{H}\) NMR spectroscopy and single-crystal X-ray diffraction.

As shown in Fig. 1, the components of (2,3-nap)-(dmaa) self-assemble to form a 1D polymer held together by O–H \(\cdots\) N hydrogen bonds (O(1) \(\cdots\) N(1) 2.584(2) Å) (Fig. 1a). In this arrangement, 2,3-nap adopts, in contrast to (2,3-nap)-(fum) yet similar to the pure bipyridine,4 an \(\text{anti}\) conformation (dihedral angle: 42.1°) with the S-atoms pointing in opposite directions. Neighbouring 1D polymers lie parallel and offset, with the naphthalene units participating in edge-to-face \(\pi\)–\(\pi\) forces with 4-pyridyl groups. As a consequence of the assembly process, the \(\text{C} \equiv \text{C}\) bonds of the dienes are separated by approximately 9.6 Å within and 9.7 Å between adjacent 1D polymers, respectively (Fig. 1b). The geometries lie well outside the criteria of Schmidt for a photodimerisation in a solid. In line with the structure of (2,3-nap)-(dmaa), exposure of a powdered crystalline sample of the co-crystal to UV-irradiation (450 W broad-band UV lamp) revealed the solid to be photostable.

As shown in Fig. 2, the components of (1,8-dpn)-(dmaa) form, in contrast to (2,3-nap)-(dmaa), a discrete hydrogen-bonded assembly, which sits around a crystallographic centre of inversion, sustained by four O–H \(\cdots\) N hydrogen bonds (O(1) \(\cdots\) N(1) 2.676(2) Å) (Fig. 2a). In this arrangement, 1,8-dpn, being more rigid than 2,3-nap, enforces the diene into an in-phase stacked geometry wherein the \(\text{C} \equiv \text{C}\) bonds lie parallel and separated by 3.69 Å. The geometry places each \(\text{C} \equiv \text{C}\) bond in a position suitable for [2 + 2] photodimerisation. Nearest-neighbour assemblies lie orthogonal and separated at a distance \(>\)10 Å (Fig. 2b), which means the olefins within the 0D hydrogen-bonded structures possess the \(\text{C} \equiv \text{C}\) bonds able to undergo photoreaction.

To determine the reactivity of the solid, a powdered crystalline sample of 2(1,8-dpn)-(dmaa) was subjected to UV-irradiation (450 W broad-band UV lamp) for a period of approximately 70 h. As determined by \(^1\text{H}\) NMR spectroscopy (solvent: DMSO-\(d_6\)), a monocyclobutane formed stereospecifically in 55% yield. The generation of a monocyclised product was evidenced by the emergence of both alkene and cyclobutane protons at 6.36 ppm and 3.70 ppm, respectively (ratios: 1 : 1). The chemical shifts of the peaks were different than the recently reported \(\text{anti}\) photodimer.7 Moreover, given that dmaa was assembled in-phase in 2(1,8-dpn)-(dmaa) for reaction, the cyclobutane product was assigned as the \(\text{syn}\) photodimer.

The structure of the cyclobutane photoproduct was confirmed \textit{via} single-crystal X-ray diffraction. When the reacted solid was dissolved in 4 : 1 hexanes:ethyl acetate (v/v), a white precipitate involving 1,8-dpn and the cyclobutane (ratio: 2 : 1) immediately formed. Recrystallisation from methanol afforded light-yellow needles after a period of 24 h. As shown in Fig. 3, cbda and 1,8-dpn assemble to form a three-component complex** sustained by four O–H \(\cdots\) N hydrogen bonds (O(1) \(\cdots\) N(1) 2.717(3) Å, O(3) \(\cdots\) N(2) 2.661(3) Å) (Fig. 3a). The pairs of acid groups attached to the unsymmetrical cyclobutane ring lie splayed, with each type of acid group interacting with an identical template molecule. The complexes pack in the crystallographic \(a\)-plane to form 2D layers sustained by edge-to-face \(\pi\)–\(\pi\) interactions involving pyridyl and naphthalene units of the templates (Fig. 3b).
The final R values were 0.0579 (I > 2σ(I)). The final wR2(F2) values were 0.1483 (I > 2σ(I)). The final R values were 0.0963 (all data). The final wR2(F2) values were 0.1634 (all data) (CCDC 802317).

